Important Algebra Formulas and Identities
Formula - Formula is a mathematical expression or rule.Identity - An identity is an equation that is true for all the values of the variables.
Formulas
- (a + b)2 = a2 + b2 + 2ab
- (a - b)2 = a2 + b2 - 2ab
- a2 - b2 = (a+b)(a-b)
- a2 + b2 = (a+b)2 -2ab
- (a+b+c)2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ac
- (a-b-c)2 = a 2 + b 2 + c 2 - 2ab + 2bc - 2ac
- (a + b)3 = a3 + b3 + 3a2b + 3ab2
                = a3 + b3 + 3ab(a+b) - (a - b)3 = a3 - b3 - 3a2b + 3ab2
                = a3 - b3 - 3ab(a-b) - a3 + b3 = (a+b)(a2 - ab + b2)
- a3 - b3 = (a-b)(a2 + ab + b2)
Deducing the Important Formulas
1. a2 = a * a
2. (a + b)2 = (a + b)(a + b) [ Back to Formulas ]
= a2 + ab + ab + b2
= a2 + 2ab + b2
3. (a – b)2 = (a – b)(a – b) [ Back to Formulas ]
= a2 - ab - ab + b2
= a2 - 2ab + b2
4 (i). a2 + b2 = (a + b)2 – 2ab [ Back to Formulas ]
[As (a + b)2 = a2 + 2ab + b2 and to get a2 + b2 we only need to add – 2ab]
(ii). a2 + b2 = (a - b)2 + 2ab
[As (a - b)2 = a2 - 2ab + b2 and to get a2 + b2 we only need to add + 2ab]
5 (i). a2 - b2 = (a - b)2 + 2ab – 2b2 [ Back to Formulas ]
[As (a - b)2 = a2 - 2ab + b2 and to get a2 - b2 we only need to add + 2ab and – 2b2] = (a - b)2 + 2b (a – b)
= (a – b) [ (a – b) + 2b]
= (a – b)(a + b)
(ii). a2 - b2 = (a + b)2 - 2ab – 2b2
[As (a + b)2 = a2 + 2ab + b2 and to get a2 - b2 we only need to add - 2ab and – 2b2]
= (a + b)2 - 2b (a + b)
= (a + b) [ (a + b) - 2b]
= (a + b)(a – b)
6.(a + b + c)2 = (a + b + c)(a + b + c) [ Back to Formulas ]
= a(a + b + c) + b(a + b + c) + c(a + b + c)
= a2 + ab + ac + ab + b2 + bc + ac + bc + c2
= a2 + b2 + c2 + ab + ab + ac + ac + bc + bc
= a2 + b2 + c2 + 2ab + 2ac + 2bc
7.(a - b - c)2 = (a - b - c)(a - b - c) [ Back to Formulas ]
= a(a - b - c) - b(a - b - c) - c(a - b - c)
= a2 - ab - ac - ab + b2 + bc - ac + bc + c2
= a2 + b2 + c2 - ab - ab - ac - ac + bc + bc
= a2 + b2 + c2 - 2ab - 2ac + 2bc